Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrei S. Batsanov ${ }^{a}$ * and Dmitrii F. Perepichka ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and ${ }^{\mathbf{b}}$ INRS-Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1S2, Canada

Correspondence e-mail:
a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.105$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

A 1:1 cocrystal of 2,7-dicyano-9-dicyano-methylene-4,5-dinitrofluorene and benzonitrile

The title complex contains infinite stacks of alternating $\mathrm{C}_{18} \mathrm{H}_{4} \mathrm{~N}_{6} \mathrm{O}_{4}$ and $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}$ molecules; the former is warped to a much larger extent than in its charge-transfer complex with tetrathiafulvalene.

Comment

During our studies of charge-transfer complexes (CTC), we have observed an interesting case of donor-induced cocrystallization (Batsanov et al., 2001). Normally, 2,4,5,7-tetranitro-9-fluorenone (TeNF) and 2,4,5,7-tetranitro-9-dicyanomethylenefluorene (DTeNF) crystallize from chlorobenzene as solvent-free species. However, when tetrathiafulvalene (TTF) was added to the solutions (in an unsuccessful attempt to prepare CTC), both acceptors crystallized from it as solvates, viz. TeNF. 2 PhCl and DTeNF.PhCl.

(I) $\cdot \mathrm{PhCN}$

Herein we report another example of this effect. While attempting to crystallize, from a benzonitrile solution, a CTC of the acceptor 2,7-dicyano-4,5-dinitro-9-dicyanomethylenefluorene, (I), and the donor 2,6-dibutoxy-9,10-bis(1,3-di-thiol-2-ylidene)-9,10-dihydroanthracene, (II), we obtained instead cocrystals of (I) with the solvent in a 1:1 ratio, i.e. (I) $\cdot \mathrm{PhCN}$. A CTC of (I) with TTF, (I)•TTF $\cdot \mathrm{PhCl}$, or (III), has been characterized previously by X-ray crystallography (Perepichka et al., 1998; Kuz'mina et al., 2002), but the crystal structure of pure (I) or of any molecular complex thereof without charge transfer, has not been reported thus far.

The crystal structure of (I) $\cdot \mathrm{PhCN}$ comprises infinite mixed stacks, parallel to the a axis, of alternating molecules of (I) and benzonitrile (Fig. 1 and Table 1). The fluorene moiety of (I) is warped, as in other fluorene derivatives with nitro substituents in positions 4 and 5 (Silverman et al., 1974; Batsanov et al., 2001). The twist is obviously caused by steric repulsion between the two nitro groups. However, it is noteworthy that the distortion is much stronger in (I) $\cdot \mathrm{PhCl}$ than in (III). Thus, the deviation of the 13 fluorene C atoms from their mean plane averages $0.11 \AA$ in (I). PhCl versus $0.06 \AA$ in (III). In (I) $\cdot \mathrm{PhCN}$, both six-membered rings of the fluorene moiety

Received 5 August 2003
Accepted 11 August 2003
Online 23 August 2003

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
adopt envelope conformations: the $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 10$ and $\mathrm{C} 5-\mathrm{C} 8 /$ C 13 moieties are planar, with atoms C 11 and C12 tilted out of their respective planes. A similar conformation was observed in (III). However, the dihedral angle between the C1-C4/C10 and C5-C8/C13 moieties in (I)•PhCN equals 15.8 (1) $)^{\circ}$, against 7.9° in (III). The twist around the $\mathrm{C} 9=\mathrm{C} 14$ bond, i.e. the dihedral angle between the $\mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 13 / \mathrm{C} 14$ and $\mathrm{C} 9 / \mathrm{C} 14-\mathrm{C} 16 /$ $\mathrm{N} 15 / \mathrm{N} 16$ planes, is small in both structures, $4.0(1)^{\circ}$ in (I) $\cdot \mathrm{PhCN}$ against 3.7° in (III). The $\mathrm{C} 9=\mathrm{C} 14$ bond itself is marginally longer in (III) than in (I) $\cdot \mathrm{PhCN}$, viz. 1.379 (6) and 1.362 (3) Å, respectively, while the adjacent C9-C10 and $\mathrm{C} 9-\mathrm{C} 13$ bonds of the five-membered ring average 1.463 (6) \AA in (III) versus 1.476 (3) \AA in (I)•PhCN. Although each of these differences lies within 3 e.s.d., all of them are consistent with the acceptor molecule (I) in (III) acquiring an overall negative charge, which enhances its aromaticity, while no appreciable charge transfer takes place in (I) $\cdot \mathrm{PhCN}$.

Experimental

Acceptor (I) was prepared as described by Perepichka et al. (1998), donor (II) as described by Bryce et al. (2000). $5.5 \mathrm{mg}(0.015 \mathrm{mmol})$ of (I) was dissolved in freshly distilled benzonitrile (0.5 ml) in a small (2 ml volume) vial, on heating at 343 K for $10-15 \mathrm{~min} .7 .8 \mathrm{mg}$ (0.015 mol) of (II) was dissolved in benzonitrile (0.5 ml) at 333 K and the solution was added to that of (I). The brown-green solution was permitted to cool to room temperature and left overnight, whereupon small orange crystals of X-ray quality were formed.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{4} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}$	$Z=2$
$M_{r}=471.39$	$D_{x}=1.501 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.211(1) \AA$	Cell parameters from 465
$b=9.480(2) \AA$	reflections
$c=16.451(3) \AA$	$\theta=10.4-24.7^{\circ}$
$\alpha=96.16(1)^{\circ}$	$\mu=0.11 \mathrm{~mm}^{-1}$
$\beta=102.41(1)^{\circ}$	$T=120(2) \mathrm{K}$
$\gamma=105.30(1)^{\circ}$	Plate, orange
$V=1043.2(3) \AA^{3}$	$0.25 \times 0.15 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART 1K CCD area-
detector diffractometer ω scans
Absorption correction: none 6896 measured reflections 4232 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.106$
$S=0.95$
4232 reflections
325 parameters

2544 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-8 \rightarrow 9$
$k=-11 \rightarrow 9$
$l=-20 \rightarrow 20$

H -atom parameters constrained

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.045 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O41-N4	1.225 (2)	C7-C8	1.394 (3)
O42-N4	1.234 (2)	C7-C18	1.446 (3)
O51-N5	1.229 (2)	C8-C13	1.383 (3)
O52-N5	1.225 (2)	C9-C14	1.362 (3)
N4-C4	1.471 (3)	C9-C10	1.473 (3)
N5-C5	1.477 (3)	C9-C13	1.478 (3)
N15-C15	1.145 (3)	C10-C11	1.414 (3)
N16-C16	1.145 (3)	C11-C12	1.478 (3)
N17-C17	1.142 (3)	C12-C13	1.419 (3)
N18-C18	1.147 (3)	C14-C16	1.437 (3)
C1-C10	1.383 (3)	C14-C15	1.439 (3)
C1-C2	1.394 (3)	N19-C19	1.149 (3)
C2-C3	1.388 (3)	C19-C20	1.450 (3)
C2-C17	1.446 (3)	C20-C25	1.394 (3)
C3-C4	1.379 (3)	C20-C21	1.395 (3)
C4-C11	1.394 (3)	C21-C22	1.386 (3)
C5-C6	1.378 (3)	C22-C23	1.379 (3)
C5-C12	1.392 (3)	C23-C24	1.391 (3)
C6-C7	1.394 (3)	C24-C25	1.387 (3)
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2$	118.9 (2)	C14-C9-C10	126.4 (2)
C3-C2-C1	120.7 (2)	C14-C9-C13	126.9 (2)
C3-C2-C17	118.8 (2)	C10-C9-C13	106.48 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 17$	120.4 (2)	C1-C10-C11	121.12 (19)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.2 (2)	$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	130.80 (19)
C3-C4-C11	121.7 (2)	C11-C10-C9	108.07 (18)
C3-C4-N4	116.63 (19)	C4-C11-C10	117.12 (19)
C11-C4-N4	121.41 (19)	C4-C11-C12	134.7 (2)
C6-C5-C12	121.58 (18)	C10-C11-C12	108.20 (17)
C6-C5-N5	115.92 (19)	C5-C12-C13	117.42 (19)
C12-C5-N5	122.10 (19)	C5-C12-C11	134.72 (18)
C5-C6-C7	119.5 (2)	C13-C12-C11	107.77 (18)
C6-C7-C8	120.9 (2)	C8-C13-C12	121.6 (2)
C6-C7-C18	118.4 (2)	C8-C13-C9	130.11 (19)
C8-C7-C18	120.65 (19)	C12-C13-C9	108.31 (18)
C13-C8-C7	118.65 (19)		

All H atoms were treated using the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ bond lengths of $0.95 \AA$ and $U_{\text {iso }}$ fixed at $1.2 U_{\text {eq }}$ of the corresponding C atom.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank Professor M. R. Bryce for fruitful advice.

References

Batsanov, A. S., Perepichka, I. F., Bryce, M. R. \& Howard, J. A. K. (2001). Acta Cryst. C57, 1299-1302.

organic papers

Bruker (1997). SMART (Version 5.049), SAINT (Version 5.00) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bryce, M. R., Finn, T., Batsanov, A. S., Kataky, R., Howard, J. A. K. \& Lyubchik, S. B. (2000). Eur. J. Org. Chem. pp. 1199-1206.
Kuz'mina, L. G., Perepichka, I. F., Perepichka, D. F., Howard, J. A. K. \& Bryce, M. R. (2002). Cryst. Rep. 47, 251-261.

Perepichka, I. F., Kuz'mina, L. G., Perepichka, D. F., Bryce, M. R., Goldenberg, L. M., Popov, A. F. \& Howard, J. A. K. (1998). J. Org. Chem. 63, 6484-6493. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Silverman, J., Yannoni, N. F. \& Krukonis, A. P. (1974). Acta Cryst. B30, 14741480.

